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Abstract

Urinary diamines are biomarkers of diisocyanate exposure. Diisocyanates are considered as skin 

and respiratory sensitizers and are the most frequently reported cause of occupational asthma. 

Herein, we report on the development and validation of an ultra-performance liquid 

chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the measurement of five 

aromatic diamines, 4,4'-methylenedianiline (MDA), 2,4-toluenediamine (4TDA), 2,6-

toluenediamine (6TDA), 1,5-naphthalenediamine (NDA), and p-phenylenediamine (PPDA) in 

human urine. The method incorporates sample preparation steps, which includes a four-hour acid 

hydrolysis followed by high-throughput solid phase extraction prior to chromatographic 

separation. Chromatographic separation was achieved using a C18 reversed phase column with 

gradient elution of basic mobile phases (pH 9.2). The duty cycle of the method was less than five 

minutes, including both the column equilibration and autosampler movement. Analytical detection 

was performed using positive ion atmospheric pressure chemical ionization tandem mass 

spectrometry (APCI-MS/MS) in scheduled multiple reaction monitoring (sMRM) mode. Excellent 

linearity was observed over standard calibration curve concentration ranges of three orders of 

magnitude with method detection limit ranging from 10 to 100 pg/mL. The inter-day and intra-day 

reproducibility and accuracy were within ±15%. This method is fast, accurate, and reproducible, 

and is suitable for assessment of exposure to the most common aromatic diisocyanates within 

targeted groups as well as larger population studies such as the National Health and Nutrition 

Examination Survey (NHANES).
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Introduction

Isocyanates are highly reactive compounds that are widely used in commercial and 

consumer products. In the polyurethane industry, diisocyanates (compounds containing two 

isocyanate functional groups) are reacted with compounds containing hydroxyl groups, such 

as polyols, to form urethane linkages that are very useful in the production of polyurethane 

based products. The most commonly used aromatic diisocyanates are 4,4'–

methylenediphenyldiisocyanate (MDI), 2,4–toluenediisocyanate (4TDI), and 2,6–

toluenediisocyanate (6TDI). Other commonly used aromatic diisocyanates include 1,5-

naphthalenediisocyanate (NDI) and p-phenylenediisocyanate (PPDI). MDI is most 

commonly used in the manufacturing of rigid foam, fibers, sealants, coatings, glues, and 

adhesives. Commercial TDI, available as an 80/20 mixture of 4TDI and 6TDI, is used in the 

manufacturing of flexible polyurethane foam found in car seats, mattresses, and cushions.1, 2 

NDI and PPDI are used in the production of synthetic rubber and thermoplastic elastomers.2 

Regardless of the benefits that diisocyanates offer to the polyurethane industry, exposure to 

these reactive compounds may lead to negative health effects. All diisocyanates are skin and 

respiratory sensitizers.3 Exposure to these chemicals can be lethal when inhaled at high 

concentrations by sensitized subjects, can elicit hypersensitivity pneumonitis and accelerated 

lung function loss, and is considered one of the most frequently reported causes of 

occupational asthma.3–5 In addition, the in vivo hydrolyzed products of diisocyanates (i.e., 

4,4'-methylenedianiline (MDA), 2,4-toluenediamine (4TDA), 2,6-toluenediamine (6TDA), 

1,5-Naphthanlenediamine (NDA), p-phenylenediamine (PPDA)) have been reported as 

hepatotoxic (MDA) and suspected human carcinogens (2,4-TDA).6–9

Environmental air monitoring is the most commonly used approach for the assessment of 

diisocyanate exposure.3, 10–12 However, measurement of diisocyanates content in air fails to 

address the true body burden. Biological monitoring is one of the most accurate approaches 

for measuring true body burden to toxicant exposure.13–15

A significant amount of work has been done to understand the toxicokinetics and 

toxicodynamics of diisocyanates in human and animal models. Hematological studies have 

shown that diisocyanates are bound to serum albumin16–18 and hemoglobin.19, 20 In urine, 

however, they are excreted as low molecular weight conjugates and can be analyzed as 

diisocyanate-derived diamines and/or diamine derivatives.9, 14, 21 Due to the ease of 

collection and non-invasive nature of urine sampling, the measurement of hydrolyzed 

urinary diamines has been the most widely accepted approach for the biological monitoring 

of diisocyanate exposure.

Over the last three decades, multiple analytical methods have been developed for the 

measurement of urinary aromatic diamines.13, 15, 22 The majority of the methods involve 

overnight hydrolysis followed by liquid-liquid extraction and sample derivation steps prior 
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to gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass 

spectrometry (LC-MS) based analysis.14, 23 Moreover, previously published analytical 

methods often had unacceptably long run times (~30 minutes per sample). To our 

knowledge, only Sakai et al. have published a relatively faster LC-MS based method to 

measure urinary aromatic diamines that involved shorter hydrolysis time, i.e., 1.5 hours, and 

eliminated sample derivatization step;24 the run time per sample was 13 minutes. However, 

the method was limited to only two aromatic diamines, i.e., 4TDA and 6TDA and the results 

reported were based on incomplete hydrolysis.24 The purpose of our study was to develop a 

simple, sensitive, accurate, rapid, and high-throughput ultra-performance liquid 

chromatography tandem mass spectrometry (UPLC-MS/MS) based analytical method for 

simultaneously measuring the five most common aromatic diamine biomarkers in order to 

better assess diisocyanate exposure within targeted groups as well as the general population.

Experimental

Standard safety precautions were followed when performing experiments, including the use 

of personal protective equipment, proper engineering, and administrative compliance based 

on the risk assessment that identified physical, health, and procedural hazards.

Materials

LCMS OPTIMA grade acetonitrile and isopropyl alcohol (IPA) were purchased from Fisher 

Scientific (Pittsburg, PA). LCMS grade ammonium acetate (NH4OAc) and ammonium 

hydroxide (NH4OH) were purchased from Sigma-Aldrich (St. Louis, MO). 1N sodium 

hydroxide (NaOH) and 6N hydrochloric acid (HCl) were purchased from Sigma-Aldrich. 

Analytical standard grade PPDA, 4TDA, 6TDA, NDA, and MDA were purchased from 

Sigma-Aldrich. MDA-[13C, 15N2], PPDA-[13C6], and NDA-[15N2] were purchased from 

IsoSciences (Kings of Prussia, PA), and 4TDA-[13C6] and 6TDA-[13C6] from Toronto 

Research Chemicals (Ontario, Canada).

Calibration Solutions

Separate master stocks of mixed standards solution and internal standards solution were 

prepared in acetonitrile. Master stocks were diluted in water to make working stocks. All 

calibration solutions were prepared by diluting working stock solution in 90/10 buffer mix 

(v/v), i.e., 90% 5 mM NH4OAc buffer (pH 9.2) and 10% 95/5 acetonitrile/100 mM NH4OAc 

buffer (pH 9.2). All stock solutions were stored in −70 °C freezer prior to use.

Sample Preparation

The general workflow for the sample preparation involved acid hydrolysis and automated 

solid phase extraction (SPE). For acid hydrolysis, 250 µL urine was mixed with 100 µL 6 N 

HCl and 50 µL internal standard mixture and heated at 80 °C for 4 hours. The solution was 

allowed to cool at room temperature and then adjusted to approximately pH 1.0 using 500 

µL of 1N NaOH prior to SPE. Strata XC (30mg, 3mL) mixed-mode strong cation exchange 

cartridges from Phenomenex (Torrance, CA) were used for sample clean-up. SPE steps 

involved cartridge conditioning using 1 mL methanol followed by equilibration using 1 mL 

HPLC grade water. The hydrolyzed samples were then loaded and washed with 1 mL 0.1 N 
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HCl acid followed by 2 mL methanol. Finally, analytes were eluted in 2 × 500 µL of 

75/20/5% (v/v/v) methanol/IPA/NH4OH solutions. Eluents were evaporated to dryness in a 

TurboVap LV evaporation system from Biotage (Charlotte, NC) under nitrogen gas at 60 °C 

and reconstituted in 250 µL 90/10 buffer mix for UPLC-MS/MS analysis.

SPE Automation

All SPE experiments were performed on a Microlab Star Liquid Handling Workstation from 

Hamilton Robotics (Reno, NV). The Hamilton Star™ was built with a modified deck 

containing four recessed deep well vacuum chambers with one Basic Vacuum System per 

well. Custom 3 mL cartridge and tube holders were acquired to hold consumables necessary 

for vacuum application. Each column holder was reinforced with an aluminum collar gasket 

that permitted uninterrupted vacuum pressure. Each recessed well was capable of applying 

vacuum pressure to a maximum of 12 sample columns simultaneously. Hence, the system 

was able to handle 48 samples per batch and the total run time was approximately 1.5 hours.

UPLC-APCI-MS/MS Analysis

The analytical run was performed using an Acquity UPLC system (Waters Corporation, 

Milford, MA) equipped with ACE Excel2 SuperC18 Column (Mac-Mod Analytical, Chadds 

Ford, PA). The UPLC system was coupled to a 5500 triple quadrupole mass spectrometer 

equipped with an APCI source (AB Sciex, CA). Chemical separation was performed using 

the following gradient elution: initial gradient, 90% NH4OAc (mobile phase A) and 10% 

95/5 acetonitrile/100 mM NH4OAc buffer (mobile phase B); 0–1.0 minute, linear gradient 

up to 30% B; 1.0–2.0 minutes, linear gradient up to 90% B; 2.0–2.5 minutes, linear gradient 

back to 15% B, and 2.5–4.0 minutes, 10% B for column equilibration. The flow rate was set 

at 500 µL/min throughout the run. Column and sample manager temperatures were set to 

35 °C and 5 °C, respectively. Injection volume was 5 µL. The mass spectrometer was 

operated in positive ion APCI scheduled multiple reaction monitoring (sMRM) mode. 

Optimized ion source parameters were: APCI ion current 3 µA, curtain gas flow 30 

(arbitrary units), GS1 gas flow 45 (arbitrary units), and probe temperature 550 °C. The 

chemical structures and mass-to-charge ratios of the precursor ions monitored are shown in 

Figure 1. Other compound dependent parameters are shown in Table 1.

Data Analysis

All LC-MS data were generated in Analyst 1.6.2 (Sciex, Framingham, MA) and were 

processed in MultiQuant 3.0.2 (Sciex, Framingham, MA).

Results and Discussion

Hydrolysis

Biological monitoring of exposure to diisocyanates has primarily involved analyzing 

isocyanate-derived diamines released by acid or base hydrolysis of urine or plasma 

samples.15 Upon exposure, aromatic diisocyanates are converted in vivo into corresponding 

diamines. These diamines form conjugates with a variety of functional groups on 

macromolecules including, hydroxyl, sulfhydryl, and amino groups. In addition, diamines 

can undergo N-acetylation to form mono- and di-acetylated diamine metabolites, which are 
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readily excreted in urine.9 Acid hydrolysis of urine can breakdown both conjugated and 

acetylated diamines into a free form while base hydrolysis is only effective for conjugated 

diamines.21 In this study, acid hydrolysis was used so that the total concentration of diamine 

metabolites in urine could be measured effectively. Shown in Figure 2 are temporal 

hydrolysis profiles of MDA concentration in both positive and negative control urine 

samples over a 24-hour period. These results show a linear increase in concentration of 

MDA in the positive control urine sample for about 3 hours, at which point the concentration 

begins to plateau up to 24 hours. No MDA response was observed in negative control urine. 

As a result, all experiments in this study were performed using 4-hour acid hydrolysis. 

Additionally, to observe the stability of aromatic diamines under a given hydrolytic 

condition, spiked urine samples were hydrolyzed over a 24-hour period. No significant 

difference in absolute response was observed for any analyte (results not shown), indicating 

that urinary aromatic diamines were stable for at least 24 hours under these hydrolytic 

conditions.

Solid Phase Extraction

Solid phase extraction was performed by taking advantage of strong cation-exchange-, π-π 
interaction-, and hydrophobic-interaction-based mechanisms offered by the Strata-XC SPE 

cartridge. Listed in Table 2 are pKa1, pKa2, and logP for aromatic diamines. Based on pKa 

almost all aromatic diamines should be positively charged at a pH below 2.4 according to the 

Henderson-Hasselbalch approximation. Therefore, below pH 2.4, maximum recovery is 

expected for these diamines, which are primarily retained by the SPE sorbent through 

electrostatic interactions. Upon comparison of total spiked recovery at pHs 1, 2, and 3 

highest recoveries were obtained at pH 1. At this pH, four out of five aromatic diamines had 

average recoveries of 100%, except for PPDA where the average recovery was 91%. At pH 2 

and 3, PPDA recovery was lower than the other analytes, with recovery of less than 50% at 

pH 3. Of all analytes, MDA had the highest recovery at all pHs, with average recovery of at 

least 94% even at pH 3 although it had low pKa values. This observation can be explained 

based on the higher logP values of MDA that favors hydrophobic interaction offered by the 

SPE sorbent. In contrast, PPDA had least hydrophobic interactions (low logP & high pKa2) 

and hence suffered from low recoveries at pHs 2 and 3. Percentage spike recovery was 

calculated based on the following standard equation using four pre-spiked and four post-

spiked urine samples at each of the three pHs (Table 3):

(1)

UPLC-APCI-MS/MS

Chromatographic separation was performed at pH 9.2 using an ammonium acetate buffer in 

both aqueous and organic mobile phases. According to the Henderson-Hasselbalch 

approximation, all target compounds exist as neutral molecules at pH 9.2 (refer to Table 2 

for pKa values) and hence should be well retained by reversed-phase columns. With a 

gradient elution, from 10% to 90% organic mobile-phase composition, these compounds are 

eluted sequentially according to their logP values. Figure 3a shows a typical extracted-ion 
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chromatogram of standard solutions overlaid with a mobile-phase gradient plot of the 

percentage change in composition of the organic mobile phase (mobile phase B). These 

results show that PPDA, the compound with the lowest logP value, elutes early while MDA, 

the compound with the highest logP, has the longest retention time. All analytes were 

ionized using positive ion APCI. APCI ionizes low molecular mass neutral molecules more 

efficiently based on gas phase ion-molecule reactions, and is inherently less susceptible to 

matrix suppression effects compared to electrospray ionization (ESI). Matrix suppression 

effects associated with APCI and ESI modes were compared using post-column tee infusion 

of urine from a UPLC into a standard solution from an auxiliary syringe (Figure 3b). The 

urine matrix used for this evaluation was processed through the same sample preparation 

steps as an unknown sample including acid hydrolysis and SPE. In absence of the urine 

matrix, the total ion-current of PPDA generated in APCI mode was about 1.5 times higher 

than in ESI mode as seen by comparing ion intensities in the matrix-free zone in Figure 3. 

At 0.4 min both APCI and ESI PPDA signal levels were suppressed as the urine front arrived 

at the ionization source, however the suppression corresponding to the retention time of 

PPDA (0.67 min) was greatest for ESI. In ESI mode, ion-suppression of PPDA was 90% 

compared to 25% in APCI mode resulting in a PPDA signal 11 times higher using APCI 

than ESI with a urine matrix. Similarly, the overall signal produced by APCI for 4TDA, 

6TDA, NDA, and MDA in urine matrix were 6, 5.5, 2.5, and 1.5 times higher than in ESI.

Quantitative Measurement and Analytical Figures of Merit

Quantitative measurements were performed using calibration curves that were extended over 

a concentration range of 0.01–10 ng/mL for MDA and 0.05–50 ng/mL for the other analytes. 

Coefficients of determination for all curves exceeded 0.995 when fitted by linear regression 

on 1/x weighted data.

To validate the use of non-urine based calibrators for quantification, a matrix validation 

experiment was performed. For this experiment, the calibration curve slopes obtained using 

calibrators mixed in urine and mixed in the calibration solution (i.e., 90/10 buffer mix) were 

compared. The percentage difference in the slopes for each analyte was below 5%, ranging 

from 1.4% to 4.7%. Robustness of this method to matrix differences is primarily attributed 

to use of stable isotope analogs for internal standardization, which behave closely to the 

native analog.

The intra-day accuracy and precision of the method were assessed by analyzing urine 

samples spiked at low, intermediate, and high concentration with respect to the calibration 

range (Table 4). Samples were prepared in triplicates. Inter-day accuracy and precision was 

calculated from 15 total replicate analyses of spiked urine samples at three different 

concentrations and were analyzed on five different days over a five-week period. The intra- 

and inter-day bias for all analytes ranged from −0.78 to −10.2% and −2.0 to 13.7% 

respectively, while the RSD ranged from 1.0–6.0% and 2.06–8.3% respectively (Table 4).

Shown in Table 5 are limits of detection (LODs) and limits of quantitation (LOQs) of 

aromatic diamines in urine samples. LODs and LOQs were estimated based on 3S0 and 10S0 

respectively, where S0 is standard deviation as the concentration approached zero 

concentration in standard deviation versus concentration plot.25 The estimated detection 
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limits are sub ng/mL for all analytes with the lowest value (10 pg/mL) for MDA and the 

highest value (100 pg/mL) for PPDA. Since injection volume was 5 µL, the on-column 

injected detection limit was between 0.05 pg (or 50.4 pmol) for MDA and 0.5 pg (or 924 

pmol) for PPDA. Past studies have shown that the concentration of urinary aromatic 

diamines in occupationally exposed (diisocyanate) subjects are ≥ 200 pg/mL for 4TDA, 

6TDA, NDA, and MDA with the lowest detectable background concentration of 50 pg/mL 

for MDA and 100 pg/mL for 4TDA, 6TDA, and NDA.26 These values are significantly 

higher than the LODs calculated using our method. Hence, the method reported here has 

sufficient sensitivity to provide effective assessment of biomarkers of both occupational and 

environmental exposure to aromatic diisocyanates.

Stability Testing

Temporal stability tests were performed on spiked urine samples at temperatures simulating 

different sample handling and storage conditions. For this test, spiked urine samples were 

pooled, aliquoted and stored at three separate temperature conditions (i.e., room 

temperature, 4 °C, and −20 °C). At various time intervals (i.e., 0, 4, 8, 16, 24, 48, 72, 96, 

120, 144, 168 hours) simulating samples under these different temperature conditions, urine 

aliquots were transferred from their respective temperature location to a −70 °C freezer. 

Sample storage at −70 °C was the lowest temperature available for us to store urine to 

minimize sample loss following the time interval. For sample analysis, all samples were 

removed from the −70 °C and analyzed within the same run. Results showed that aromatic 

diamine stabilities in collected urine samples require refrigeration within four hours of 

sample collection, potentially due to loss from surface adsorption/decomposition in 

polyethylene sample storage cryovials. At room temperature, all analytes were stable for at 

least four hours and then concentrations dropped down by approximately 80% over seven 

days, particularly for PPDA, 4TDA and 6TDA, while NDA and MDA were less affected (≤ 

50%). Samples stored at 4 °C and −20 °C experienced less than 20% loss.

Additionally, freeze-thaw stability was assessed for spiked urine samples for seven freeze-

thaw cycles. The average calculated concentration of all analytes was within 20% indicating 

adequate stability for up to seven freeze-thaw cycles.

Speed of Analysis and Sample Throughput

Including column equilibration and autosampler movement, the duty cycle of this UPLC-

MS/MS method is 4.5 minutes. Maximum throughput for this method is 333 samples per 

day, which yields 1666 analytical results. In contrast, analytical methods reported elsewhere 

require at least 15 minutes or longer23, 24, 27 and are limited to their maximum throughput to 

96 samples per day or less. This indicates that the method presented here is at least three 

times faster than other analytical methods currently being used for analyzing aromatic 

diamines in urine samples. In addition, almost all methods reported in the literature require 

liquid-liquid extraction (LLE) followed by a sample derivatization step prior to analysis. 

Typically, LLE is a low-throughput technique compared to automated SPE, and compound 

derivatization involves another labor-intensive quantitative variable that limits overall sample 

throughput and speed of the assay. In contrast, our assay utilizes fully automated high-

throughput SPE (48 samples per batch in approximately 1.5 hours) and eliminates the time 
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intensive derivatization step, making the method straightforward, fast, and well suited for 

high-throughput clinical and research laboratories.

Conclusion

A simple and the most comprehensive UPLC-APCI-MS/MS method has been developed and 

validated for the simultaneous measurement of total concentration of five aromatic diamine 

biomarkers of exposure to corresponding diisocyanate in human urine. The method 

incorporates simplified sample preparation, shortened analytical run time, improved 

sensitivity, high accuracy and precision, high sample recovery, and is well suited for our 

high-throughput routine biomonitoring laboratory as well as other clinical/research 

laboratories. The method is currently being used in our laboratory for biomonitoring of 

aromatic diisocyanate exposures in the general U.S. population as part of NHANES.
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Figure 1. 
Chemical structures of urinary diamine metabolites of corresponding aromatic 

diisocyanates. Chemical structures of diisocyanates are identical except –NH2 groups in 

aromatic rings are substituted by –NCO groups
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Figure 2. 
Temporal acid hydrolysis profiles of an MDA-exposed urine sample (solid circles) and non-

exposed control urine (open circles). Error bars shown are standard deviations for triplicate 

samples.
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Figure 3. 
(a) Extracted-ion chromatograms of aromatic diamines collected using UPLC-APCI-MRM 

as well as percentage composition of mobile phase B against retention time shown as dotted 

line. (b) Representative post-column tee infusion test showing that ion-current of PPDA 

produced by APCI in urine matrix is 11 times higher than ESI at its retention time.
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Table 2

Chemical properties of aromatic diamines.28

Analytes pKa1 pKa2 logP

PPDA 3.04 6.46 0.32

6TDA 2.80 5.28 0.83

4TDA 2.91 5.58 0.83

NDA 3.20 4.41 1.30

MDA 3.92 4.83 2.41
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Table 3

Effect of sample pH on solid phase extraction. Percentage spike recovery of urine samples spiked at various 

pHs (n=4)

Analytes Percentage Spike Recovery

pH=1 pH=2 pH=3

PPDA 90.7 ± 5.7% 61.3 ± 2.7% 49.1 ± 1.2%

6TDA 100.4 ± 7.0% 79.3 ± 2.9% 85.6 ± 2.5%

4TDA 100.2 ± 8.4% 77.3 ± 8.2% 79.3 ± 3.9%

NDA 100.4 ± 4.3% 78.1 ± 6.0% 81.6 ± 4.7%

MDA 100.4 ± 5.0% 96.4 ± 7.1% 94.0 ± 4.7%
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Table 5

Method LODs and LOQs in urine samples. LODs and LOQs were calculated as 3S0 and 10S0, respectively, 

where S0 represents standard deviation as the concentration approached zero concentration.

Analytes
Method LOD

(ng/mL)
Method LOQ

(ng/mL)

PPDA 0.10 0.33

6TDA 0.03 0.10

4TDA 0.03 0.10

NDA 0.03 0.10

MDA 0.01 0.03
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